I'm running into some computational problems, and I think it is a problem with CFDG, but it is difficult to debug - could use some sort of print statement. In any case the following math computes correctly in python:

Code: Select all

```
vector2 vector2(number a1, number b1) = (a1,b1)
vector3 vector3(number a1, number b1, number c1) = (a1,b1,c1)
vector2 Cadd(vector2 c1, vector2 c2) =
(c1[0]+c2[0],c1[1]+c2[1])
vector2 Csub(vector2 c1, vector2 c2) =
(c1[0]-c2[0],c1[1]-c2[1])
vector2 Cmul(vector2 c1, vector2 c2) =
(((c1[0]*c2[0])-(c1[1]*c2[1])),((c1[0]*c2[1])+(c1[1]*c2[0])))
number Cmulconj(vector2 c1) =
(c1[0])^2 + (c1[1])^2
vector2 Cmulnum(vector2 c1, number n1) =
(c1[0]*n1,c1[1]*n1)
vector2 Cconj(vector2 c1) =
(c1[0],-c1[1])
vector2 Cdivnum(vector2 c1, number n1) =
(c1[0]/n1,c1[1]/n1)
vector2 Cdiv(vector2 c1, vector2 c2) =
Cdivnum(Cmul(c1,Cconj(c2)),Cmulconj(c2))
vector2 Csqrt(vector2 c1) =
(sqrt(sqrt(c1[0]^2 + c1[1]^2)) * cos(atan2(c1[1],c1[0])/2),
sqrt(sqrt(c1[0]^2 + c1[1]^2)) * sin(atan2(c1[1],c1[0])/2))
// Descartes' theorem of mutually tangent circles, negative and positive
dtn(k1,k2,k3) = k1 + k2 + k3 - 2*sqrt(k1*k2 + k2*k3 + k1*k3)
dtp(k1,k2,k3) = k1 + k2 + k3 - 2*sqrt(k1*k2 + k2*k3 + k1*k3)
// complex version
vector2 dtcn(vector2 c1, number k1, vector2 c2, number k2, vector2 c3, number k3, number k4) =
Cdivnum(
Csub(Cadd(Cadd(Cmulnum(c1,k1),Cmulnum(c2,k2)),Cmulnum(c3,k3)),Cmulnum(Csqrt(
Cadd(Cadd(Cmulnum(Cmul(c1,c2),k1*k2),Cmulnum(Cmul(c2,c3),k2*k3)),Cmulnum(Cmul(c1,c3),k1*k3))),2)),k4)
vector2 dtcp(vector2 c1, number k1, vector2 c2, number k2, vector2 c3, number k3, number k4) =
Cdivnum(
Cadd(Cadd(Cadd(Cmulnum(c1,k1),Cmulnum(c2,k2)),Cmulnum(c3,k3)),Cmulnum(Csqrt(
Cadd(Cadd(Cmulnum(Cmul(c1,c2),k1*k2),Cmulnum(Cmul(c2,c3),k2*k3)),Cmulnum(Cmul(c1,c3),k1*k3))),2)),k4)
shape ApollonianGasket
rule{
r1 = 1/2
k1 = 1/r1
c1 = vector2(0,0)
r2 = 1/2
k2 = 1/r2
c2 = vector2(1,0)
r3 = 1/2
k3 = 1/r3
c3 = vector2(1/2,sqrt(3)/2)
CIRCLE [x c1 s (2*r1)]
CIRCLE [x c2 s (2*r2)]
CIRCLE [x c3 s (2*r3)]
k4 = dtn(k1,k2,k3)
r4 = abs(1/k4)
c4 = dtcn(c1,k1,c2,k2,c3,k3,k4)
// the error
CIRCLE [x c4 s (2*r4)]
// no error, proper translation
//CIRCLE [x 0.5 y (sqrt(3)/6) s (2*r4)]
}
```